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Let m be a natural number and let Sm denote the class of functions S(x) of the
following nature: If m is even, then S(x) is a polynomial of degree m - 1 in each
unit interval (Y, Y + 1) for all integer values of Y, while S(x) E cm-· on the entire
real axis. If m is odd, then the conditions are the same except that the intervals
(Y, Y + 1) are replaced by (Y - l, Y + l). The main result is as follows: If a
sequence (Yv)( - ro < Y < w) of numbers is preassigned such that Yv = 0(1 Y 1

8
)

as Y -->- ± 00, with s ;;;. 0, then there exists a unique S(x) E Sm satisfying the
relations S(y) = Yv , for all integer Y, and the growth condition S(x) = 0(1 X 1

8
)

as x -->- ±OC!.

INTRODUCTION AND STATEMENT OF RESULTS

Let m be a natural number and let Sm denote the class of spline functions
of degree m - I, or order m, defined on the entire axis of reals and having
simple knots at the integers v if m is even, or at the half-way points v + ! if
m is odd. This means that Sex) E Sm provided that Sex) E Cm- 2 (for m = 1
this condition is vacuous) and that the restriction of Sex) to any interval
between consecutive knots is identical with a polynomial of degree not
exceeding m - 1. Such functions are called cardinal spline functions.

Let y = (yJ be a prescribed sequence of numbers, the subscript v ranging
over all integers. The problem of finding a function F(x) (- 00 < x < 00)

satisfying the relations

F(v) = y,. for all v, (I)

* The present paper is a supplement to Cardinal interpolation and spline functions,
J. Approximation Theory 2 (1969), 167-206.
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and such that F(x) belongs to some prescribed linear space .:/' is called a
cardinal interpolation problem and denoted by the symbol

CIP( y; .:/'). (2)

Before we proceed with the contents of this paper it is important for both
motivation and orientation to state and prove the following

LEMMA 1. Let 111 "):: 2 and let the sequence (J'v) be arbitrarily assigned.
The

CLP (y; Sm) (3)

always has solutions and all its solutions form a linear manifold of dimension
2[(m - 1)/2], i.e., its dimension is m - 2 ifm is even and m - 1 ifm is odd.

Proof Let us construct a solution Sex) of the problem (3).

Case I. m is even. The knots of Sex) are at the integers. Choose
Sex) = P(x) E 1Tm-l in 0 ~ x ~ 1, the polynomial P(x) being only required
to satisfy the conditions

P(O) = Yo and P(1) = Yl . (4)

The entire solution Sex) may now be written in the form

Sex) = P(x) + a1(x - 1r:'-1 + a2(x - 2):,-1

+ ..,+ ao(_X):'-l + a_1(-x - 1)~-1 + ... , (5)

where u+ = u if u "):: 0 and u+ = 0 if u < O. Observe that the interpolation
conditions

S(v) = Yv for v = 2,3,...

determine successively and uniquely the coefficients aI' a2 , ... , respectively,
while the conditions

S(v) = )'v for v = -I, -2,... ,

likewise determine successively and uniquely the coefficients ao, a-I ,... ,
respectively. Thus, indeed, the solution Sex) is uniquely defined by the choice
of the polynomial P(x). Since P(x) depends on m - 2 linear parameters, the
proof for this case is complete.

Case 2. m is odd. The knots are now at the points v + t. We choose
Sex) = Q(x) E 1Tm _ 1 , in -t ~ x ~ t, requiring Q(x) to satisfy

Q(O) = Yo' (6)
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After this choice the solution of (3) is uniquely defined by

where the coefficients are uniquely and successively determined from
S(v) = Yv (v =1= 0) as before. As Q(x), subject to (6), depends on m - I linear
parameters, the proof of Lemma I is complete.

If m = 2, which is the case of linear spline functions, the problem (3) has a
unique solution.

If m )': 3, then most of the solutions of (3) are perfectly wild and useless
functions. It is clear that some further useful restrictions on (Yv) and on the
interpolant Sex) are needed. Two such restrictions were given in [4] by pre­
scribing the following two choices for the space .:7:

(7)

Here I ,s;; p ,s;; 00 and L p m is the class offunctions F(x) such that F<ml(x) E L p •

It was shown that both these problems have solutions, and then unique
solutions, if and only if the sequence ( yJ satisfies the condition

(8)

The present paper is a supplement to [4]. We discuss first the problem (2)
for more general and perhaps also more useful spaces .:7, namely, the
following: Let s )': 0 and let us consider the class

F s = {F(x); F(x) E C, F(x) = 0(1 x IS) as x-+ ±oo}. (9)

In particular, Fo is the class of bounded and continuous functions. We may
also describe the class

F* = UFs
s~o

as the class of functions of power growth.
Correspondingly, let

(10)

and

Ys = {y = (yJ; Yv = 0(1 v IS)

Y* = U Ys'
s~o

as v -+ ±oo} (II)

(12)
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Our present main results on cardinal spline interpolation are the following
theorems.

THEOREM 1. The

has solutions if and only if

CIP( y; Sm (') Es) (13)

(14)yE Ys

and then the problem (13) has a unique solution.

This theorem shows that the interpolation conditions (1) set up a one-to-one
correspondence between the elements of the two classes

Srn (') E* and Y*.

Let us now consider the unit-sequence

where
if v = 0,
if v oF o. (15)

Evidently 8 E Yo and by Theorem 1 the CIP (8; Sm (') Eo) has a unique
solution that we denote by Lm(x). Thus

Lm(v) = 8v for all v. (16)

THEOREM 2. The function Lm(x) satisfies an inequality of the form

ILm(x) I < Cm exp(-Ym I x I)

where Cm and Ym are positive constants.

for all real x, (17)

THEOREM 3. If the condition (14) is satisfied, then the unique solution S(x)
of the problem (13) is given by "Lagrange's formula"

00

S(x) = I yvLm(X - v)
_00

which converges locally uniformly.

We note the

COROLLARY 1. IfSex) E Sm (') F* then the relation

00

Sex) = I S(v) Lm(x - v)
-00

is an identity.

(18)

(19)
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Because of its role in Theorem 3 we call Lm(x) the fundamental cardinal
spline function of order m, or degree m - I.

All these theorems are evident if m = 1, or m = 2. In particular, L 2(x) is
the well-known "roof-function"

!
I + x in [- 1,0]

L 2(x) = I - x in [0, I]
o elsewhere

and the formula (18) gives the unique interpolant in S2 for perfectly arbitrary
data (Yv). The theorems are no longer evident if m ;): 3. For instance, it is
by no means trivial that if (y.) is a bounded sequence then there is a unique
interpolating function Sex) satisfying

Sex) E C\ S(x) EF*,

and that reduces to a quadratic function on each interval (v - ~, v + !-) for
all integers v. Moreover, this unique Sex) is bounded.

For the origin of the term "cardinal" in the present context, see [3, pp. 46­
47].

Before we mention the second subject of this paper, we recall the following
known facts. Let

if -t <; x <; ~

elsewhere
(20)

and let
m
~

Mm(x) = M 1 * ... * M1(x)

be the result ofconvoluting M1(x) with itself m times. It is easily seen that

(21)

(22)

and that the support of Mm(x) is contained in (-tm, tm). The spline function
Mm(x) is called a basis-spline, or B-spline, because of the following property
[3, Part A, Section 3. I5, Theorem 5]. If

Sex) ESm ,

then S(x) admits a unique representation of the form

<X)

Sex) = L cvMm(x - v)

(23)

(24)
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and, conversely, any such series with arbitrarily prescribed (cv) converges and
(23) holds.

Notice that Mm(x) = Lm(x) if m = I or m = 2, but this is no longer true
ifm ;;;:, 3.

Let (23) and (24) hold. When is S(x) E L p ? An answer is provided by
Theorem 12 of [4] which we restate here as

THEOREM 4. Let (23) and (24) hold and let I ~ p ~ 00. Then

S(x) E L p

if and only if

(25)

(26)

We give here a new proof of Theorem 4. It will rather easily follow from
the following result that is perhaps of independent interest.

THEOREM 5. Let (Y~';.')) be the sequence of rational numbers generated by
the expansion

m a)

(
u ) ,,(m) 2r

2 sin(u/2) = /::0 Y2r U .

If (23) and (24) hold, then the coefficients Cv in (24) may be expressed as

(27)

s
C = "(_l)r (m)S(2r) ( )

v L. Y2r v,
r=O

where s = [(m - 1)/2]. (28)

This may be regarded as an analogue for cardinal spline functions of
Taylor's formula for polynomials.

From (27) we find that

y~m) = m124, y~m) = m(5m + 2)/5760,

whence (28) assumes the following explicit forms:

m =2,

m = 3,

m =4,

m = 5,

m= 6,

Cv = S(v),

Cv = S(v) - (/8) S"(v),

Cv = S(v) - (/6) S"(v),

Cv = S(v) - (5/24) S"(v) + (3/128) S(41(v),

Cv = S(v) - !S"(v) + (1/30) S(41(v).
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In Section 1 below we describe a few applications of Theorems I and 3.
A characterization of periodic spline interpolants to periodic data follows
very easily (Theorem 6). The most beautiful and most important spline
functions and monosplines are the so-called Euler splines 6"m(x) and the
Bernoulli monosplines Bm(x). New characterizations of these functions are
obtained (Theorems 7 and 8).

In Sections 2-7, Theorems 1-5 are established by using some results from
[3,4].

I. A FEW ApPLICAnONS

A. The case ofperiodic sequences ( yJ

Let us apply Theorem I to the case when

( Yv) is a periodic sequence of period n. (l.l)

Since (yJ E Yo it follows that the CIP (y; Sm n Fo) has a unique solution.
Since S(v) = Yv for all v, (l.l) implies that S(v + 11) = Yv+n = Yv, or

S(v + n) = Yv

for all v. Therefore Sex + n) is another solution of our problem. From the
unicity we conclude that Sex + n) = Sex). This establishes

THEOREM 6. If (Yv) is a periodic sequence of period n, then the unique
solution of the

CIP( y; S", n F*) (1.2)

is periodic ofperiod n.

The periodicity of Sex) becomes immediately apparent if we use its
Lagrange representation (18). In our case, (I8) becomes

where

n-l

Sex) = L yJ.(x) ,
o

oc

lvCx) = L Lm(x - v - jn)
;=-00

(1.3)

(1.4)

are n fixed periodic elements of Sm that form a base for all such functions.
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B. The Euler splines

We consider the simplest nontrivial periodic sequence

By Theorem 6 we obtain

THEOREM 7. The

Yv = (-I)" for all v. (1.5)

CLP «-1)" ; Sm+1 II F*) (1.6)

has a unique solution denoted by Cm(x) and called the Euler spline of degree
m; Cm(x) is periodic ofperiod 2.

This is a new characterization of the Euler spline Cm(x) within the class
Sm+l' An entirely different characterization of Cm(x) was recently discussed
by Cavaretta [I].

We have already mentioned the relations

and

Cm(v) = (-I)v for all v, (1.7)

From (1.7) we get -Cm(v - I) = (-I)" whence the unicity shows that

(1.8)

(1.9)

We could develop the further properties of Cm(x) from its present definition.
However, for brevity we only remark the following: Norlund [2, Section 2]
discusses the properties of the Euler polynomials Em(x), defined as the
solutions of the identity Em(x + I) + Em(x) = 2xm, and forms the periodic
function Em(x) of period 2. From Norlund's discussion it is seen that also
Em(x) is a spline function of degree m having its knots at the integers. From
the unicity of the solution of the problem (1.6) we conclude that

if m is even
if m is odd.

(1.l0)

For the role of the Euler splines in Kolmogorov's solution of Landau's
problem for the real axis see [6, Section 1].

C. The Bernoulli monosplines

We consider the

CIP(vm; Sm II F*) (Ll1)



412 SCHOENBERG

and observe that by Theorems 1 and 3 its unique solution is the spline function

Sex) = L v"'Lm(x - v).
_CA

(1.12)

Since Sex) interpolates x'" at the integers, if we define the remainder R(x) by

then

x m = Sex) + R(x), (1.13)

R(v) = 0 for all v. (1.14)

We may restate our result as follows: First we recall that a function of the
form

R(x) = xm - Sex), where Sex) E Sm (1.15)

is called a cardinal monospline ofdegree m. Besides (1.14) our monospline R(x)
also satisfies

R(x) EF*. (1.16)

We also know, by Theorem I, that the monospline R(x) is uniquely charac­
terized, among monosplines, by the properties (1.14) and (1.16).

However, a monospline satisfying these conditions was known for a long
time: Let Bm(x) be the Bernoulli polynomial and let Bm(x) denote its periodic
extension of period 1. It is known that Bm(O) = Bm for all m ~ 2 and that
BmW = 0 if m is odd [2, Sections 2 and 3]. These remarks establish the
following theorem.

THEOREM 8. (1) The monospline

B2k(X) - B2k (1.17)

is uniquely characterized among all monosplines of degree 2k by the two
requirements (1.14) and (1.16).

(2) The monospline

B2k+1(X + t) (1.18)

is uniquely characterized among all monosplines of degree 2k + 1 by the two
requirements (1.14) and (1.16).

Finally, the following identities hold

m _ ~ mL ( _ ) + \8m(x) - Bm
x - ~ V m X v 18m(x + t)

ifm is even,
ifm is odd.

(1.19)
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Alternatively, the Bernoullian functions can be defined as solutions of this
problem, i.e., by cardinal spline interpolation of xm , and all their properties
developed starting from this definition.

An entirely different characterization of Bm(x) among monosplines was
recently given in [5].

2. PROOF OF THE UNICITY IN THEOREM 1

Theorem I being obvious if m = 1, we shall assume that m ~ 2.
Let

SmO = {Sex); Sex) ESm , S(V) = 0 for all integers v}. (2.1)

In [4, Section 9] we proved a Theorem II which asserts the following:
If I ~ p ~ 00 and if

then

Sex) = 0 for all x.

(2.2)

(2.3)

The method used in [4] to establish this proposition will easily allow us to
prove the following

LEMMA 2. fr
Sex) E SmO (1 F*, (2.4)

then again (2.3) holds.

We see that the assumption (2.2) has been replaced by the new assump­
tion (2.4).

Proof In [4, relation (9.14)] it is shown that every element of Smo admits
a unique representation

2..

Sex) = I avSv(x),
v=l

(m -2
where 2s = ,

1m -1
if m is even,
if In is odd,

(2.5)

where the S.(x) are the so-called eigensplines of the class Smo. The properties
of these eigensplines; in particular, the relations (9.18) of [4], and the magni­
tudes of the corresponding eigenvalues '\ , show easily that if the function
(2.5) is in F*, hence in some Fs , then all the coefficients av must vanish, and
therefore (2.3) holds.
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Returning to the unicity in Theorem 1, let Sl(X) and Slx) be two solutions
of the problem (13). It follows that

and therefore

by Lemma 2.

3. THE FUNDAMENTAL FUNCTION Lm(x)

Since Theorem 1, beyond unicity, is not yet available at this point, the
function Lm(x) will now be constructed directly, as already done [3]. It was
shown in [4, formula (2.2) and Lemma 6] that the real cosine polynomial

~m(U) = L Mm(v) e
ivu

[vl",m/2

(3.1)

is positive for all real u. Also that its reciprocal has a Fourier series expansion

_1_ =" (m)eivu
~m(u) L; W

v ,
(3.2)

with the following property: The series Lv w~m)zv is the Laurent expansion on
I z I = 1 of a rational function having no poles on the circle I z I = 1
[4, p. 182]. This implies the existence of an inequality of the form

for all v, (3.3)

for appropriate positive C and y depending on m.
We now define the spline function

(3.4)

From the mutually reciprocal Fourier expansions (3.1) and (3.2), we obtain
by multiplication the relations

L w~m)Mm(j - v) = 8; = l~
v

if j = 0,
if j =1= O.

(3.5)
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In terms of (3.4), (3.5) may be written as

(3.6)

and we conclude that the function (3.4) has the desired property (16).

4. PROOF OF THEOREM 2

Using (3.3), the inequalities 0 :(; Mix) :(; Mm(O), and that Mm(x) = 0 if
I x I ;;:: m12, we find from (3.4) that

I Lm(x) I :(; L I w~m) I Mm(x - v)
v>x-m/2

:(; M(O) L I w~m) I < Mm(O) C L e-w•
v>z-m/2 v>z-m/2

If x ;;:: ml2 we easily conclude that

where C1 = Mm(O) C(1 - e-v)-l emv /2• The function Lm(x) being even, this
implies (17) with Ym = y. That Lm(x) is uniquely defined by the properties
(16) and (17) we already know from the already established unicity in
Theorem 1.

5. PROOF OF THEOREM 3 AND THE PROOF OF THEOREM 1 COMPLETED

Both these proofs are simultaneously carried out by showing that

(5.1)

converges locally uniformly and furnishes a solution of the problem (13).
By our assumption (14) we may write IYv I < A(I v Is + 1) for all v, and
Theorem 2 shows that the series (5.1) is termwise dominated by the series

(5.2)

which evidently converges uniformly in x in every finite interval I x I :(; K.
Therefore (5.1) converges locally uniformly and defines an element of Sm
satisfying the relation S(v) = Yv, for all v, in view of (16).
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There remains to show that Sex) E F s or

By (5.2) we see that it suffices to show that

L I y IS e-ylx-vl = 0(1 x n

as x -->- ± ro.

as x -->- ± ro

(5.3)

(5.4)

and by symmetry we may establish this statement only if x -->- +00. As the
sum of the series (5.4) for negative values of y is clearly = 0(1), it is enough
to show that

We have

ex:

L vSe-ylx-vl = O(XS)

v=1

as x -->- + ro. (5.5)

f (~r e-ylx-vl = L + L
v~1 X ",;;:;>:+1 v>",+1

< L e-y(x-v) + L y"x-se-ylx-vl

~'~x+l ~,>x+l

= 0(1) + x-" L vSe-y(v-x)

lI>x+l

= 0(1) + x-SeY:!' L y"e-Yv.

~'>x+l

(5.6)

Ifwe restrict x to a range x > gin which the function xSe-YX is decreasing and
convex, then we may replace the last sum by an integral and obtain

x-SeYX L y"e-W < ,t,-SeYX J'" tSe-Yi dt

lI>x+l x

= r (tlx)' e-Y(i-x) dt = ( (1 + ~) S e-YU du

by the change of variables t = x + u. The last integral being 0(1) as
x -->- +00, we see by (5.6) that (5.5) holds.

6. PROOF OF THEOREM 5

We need a result from [3] concerning the so-called method of central
interpolation which is as follows. Let ( yJ be a sequence of data. We select
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m consecutive ordinates, say Yr , Yr+l ,... , Yr+m-l , and construct the Lagrange
polynomial Pr(x), of degree m - 1, that interpolates them and define the
interpolating function F(x) by the relation

F(x) = Pr(x)

within the interval (exr , flr), of length unity, whose midpoint coincides with
the midpoint of the interval (r, r + m - 1). Varying r over all integers we
see that F(x) is defined by a piecewise polynomial function. Applying this
method to the "unit" sequence Yy = Dy, defined by (15), we obtain an inter­
polating function that we denote by Cm(x). It is readily seen [3, p. 57, where
the graphs of Cm(x), for m = 1,2,3,4, are also to be found] that the inter­
polant for an arbitrary sequence ( Yy) is given by the formula

00

F(x) = L YyCmC"'( - v).

Evidently, from the definition of Cm(x) as the interpolant of (Dy), we find
that

(6.1)

We shall need

LEMMA 3. In terms of the B-splines Mm(x) and the coefficients of the
expansion (27) we have the identity

s

Cm(x) = L (-1)' y~~)M~r)(x),
7=0

[
m - 1 ]where s = 2 . (6.2)

For proof, see [3, Part B, Section 2.3].

Remark. Observe that if m is odd then functions with discontinuities of
the first kind appear on both sides of (6.2). The identity (6.2) holds for all
real x if we normalize discontinuous functions like C2k+l(X) and M:,.m-l)(x) by
requiring that

j(x) = tej(x + 0) + j(x - 0» for all x.

In order to establish the relation (28) we start from (24) or

and obtain by differentiations for integer x = n

(6.3)

(r = 0, 1,... , s), (6.4)
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where s = [em - 1)/2). Multiplying both sides by (-I)T y~';') and summing
over rwe get

t (-1)' yJ;')S(2r)(fl) = t (-1)' yJ;') L cvM;;r)(fl - v)
r~O r=O

s

= I Cv I (-lry~;')M~~r)(n - v)
'r=O

in view of the relations (6.2) and (6.1). This completes a proof of Theorem 5.

7. PROOF OF THEOREM 4

For the simple proof ofthe sufficiency of the condition (26) see [4, pp. 199­
200]. Let us now assume that

Sex) E L p

and show that the Cv in (6.3) satisfy

(cJ E lp.

(7.1)

(7.2)

Let R(x) be a polynomial of degree k in the interval [0, 1]. By Markov's
theorem we obtain the string of inequalities

max I R' I ~ 2k2 max I R I ,

max I R W I ~ 2(k - 1)2 max I R' I ,

max I R(r) I ~ 2 (k - r + 1)2 max I R(r-l) I ,

and multiplying them together we obtain

(r ~ k),

max I R(r) I ~ A(k, r) max I R I (r = 1,... , k) (7.3)

where A(k, r) = 2r (k(k - 1) ... (k - r + 1»2.
Let p = 00 in (7.1), which means that Sex) is bounded. Applying (7.3),

with k = m - 1, to each of the polynomial components of Sex) in each of
the successive interval [v, v + 1], we conclude that the m sequences

(s(r)(v», (r = 0, 1,... , m - 1)
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are bounded. Since in (28) 2s < m - 1 we conclude from (28) that the
sequence (cv) is also bounded so that (7.2) holds.

Let now 1 < p < 00. Assuming P(x) E 1Tm-l and setting

R(x) = s: P(t) dt in °< x < 1,

we apply (7.3) to this polynomial of degree k = m and obtain for r < m - 1

max I p(r) I = max I R(r+l) I < A(m, r + 1) . max I R 1

= A . max Is: pet) dt I< A . s: I P(t)1 dt.

Hence

max I p(r) I < A . ({ I P(t)[p dttP
o

by Holder's inequality. Therefore,

1
max 1p(r) IP < A P

• J I P(tW dt
o

(r = O, ... ,m - 1). (7.4)

Assume for the moment that m is even and observe that in (28) 2s = m - 2.
Applying (7.4) to the components ofSex) in successive intervals [v, v + 1] and
summing the results, we obtain

(r = 0, 1,... , m - 2)

and this shows that the s + 1 sequences appearing on the right side of (28)
are all in Ip • It follows that (cv) E Ip •

If m is odd, then in (28) 2s = m - 1. Applying (7.4) to the components of
Sex) in the intervals [v - t, v + t] we obtain similarly that

(r = 0, 1,... , m - 1)

and (26) is thereby similarly established.
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Added in proof" Theorem I for the case when m is even and s = 0 was first established by
Ju. N. Subbotin in 1965 in the paper quoted among the references of [4] above.
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